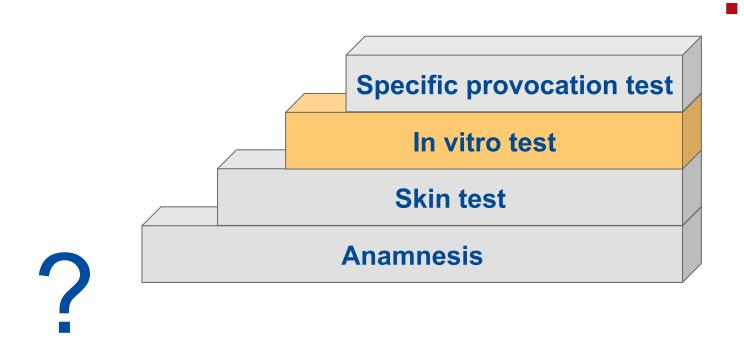
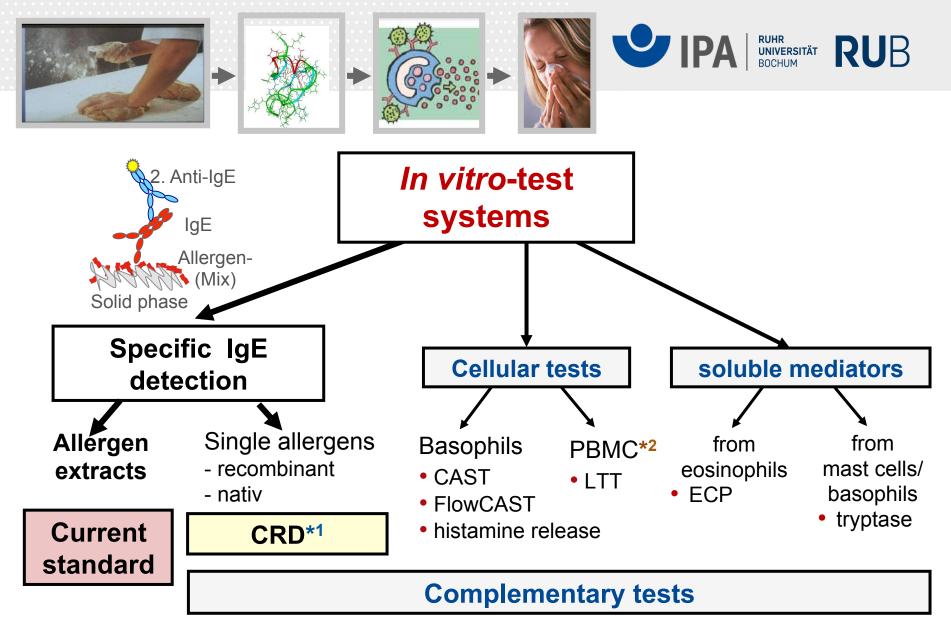



Diagnosis of occupational asthma and rhinitis: usefulness of recombinant allergens (component resolved diagnosis), metabolomics and other new aspects


### **Monika Raulf**








### **Allergy diagnostic**



Monika Raulf - 6th Jack Pepys Workshop Toronto



\*1 component- resolved diagnosis

\*2peripheral blood mononuclear cells

#### **Occupational allergen sources**





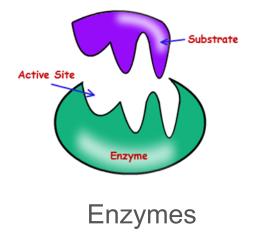
Flour dust



Isocyanates



Wood dust




Cow hair





Laboratory animals





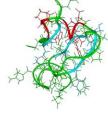
Natural rubber latex

Mold



(Storage-)mites

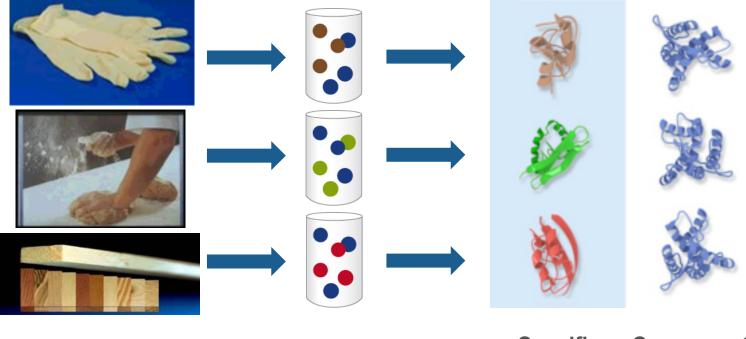



#### "Allergen" - is an ambiguous term

Allergen source: raw material from which allergenic extracts are obtained

Allergen extract: mixture of allergenic and nonallergenic molecules solubilized from a defined (usually) source




Allergen molecule: Proteins or glycoproteins identified with serum IgE of sensitized or allergic patients







#### What about recombinant allergens? From the allergen source to the allergen molecule



Allergen source

Allergen extract

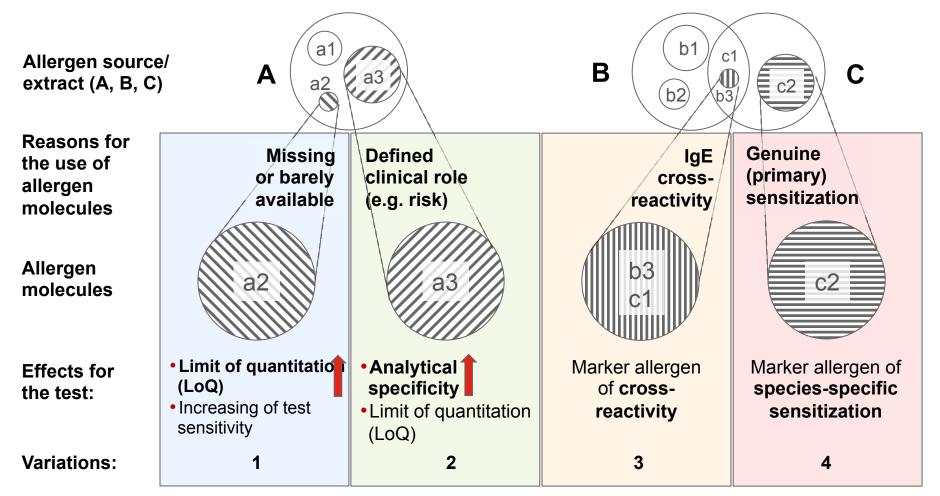
**Specific Cross reacting** allergen component

allergen component

Referring to Huss-Marp/Thermo Fisher Scientific



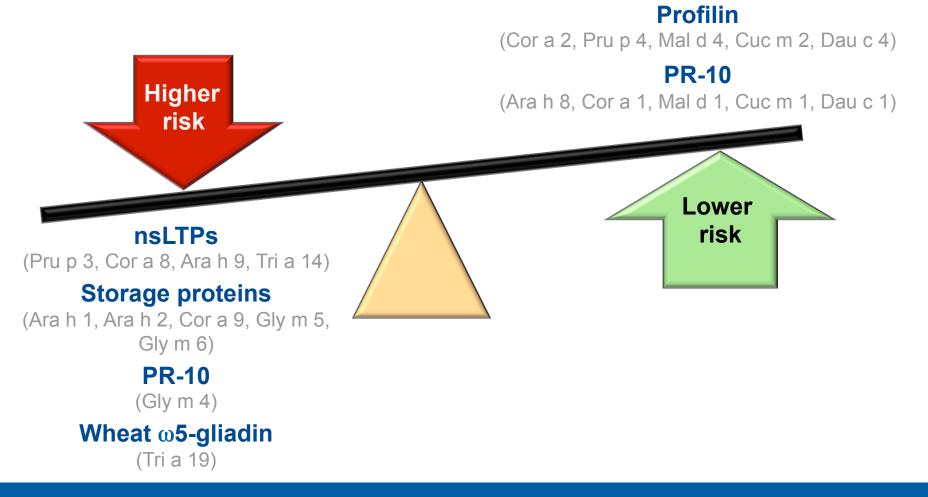



### Purified and recombinant allergens can be used

- alone (Singleplex method)
- in combination with CRD
   e.g. in the Microarray (Multiplex method)
- spiked in extracts
- combined as extract surrogate (so far not in use)



#### VIPA RUHR UNIVERSITÄT BOCHUM


#### Methodical reasons for a molecular allergy diagnosis



modifiziert nach Kleine-Tebbe/Jakob, Allergo J Int 2015; 24: 185



#### Allergens associated with a higher or lower risk







#### What can we learn from the "Latex Story "?

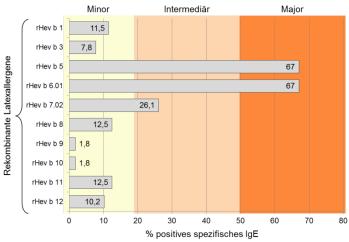
Monika Raulf - 6th Jack Pepys Workshop Toronto



#### Latex allergy diagnostic "State of the art"

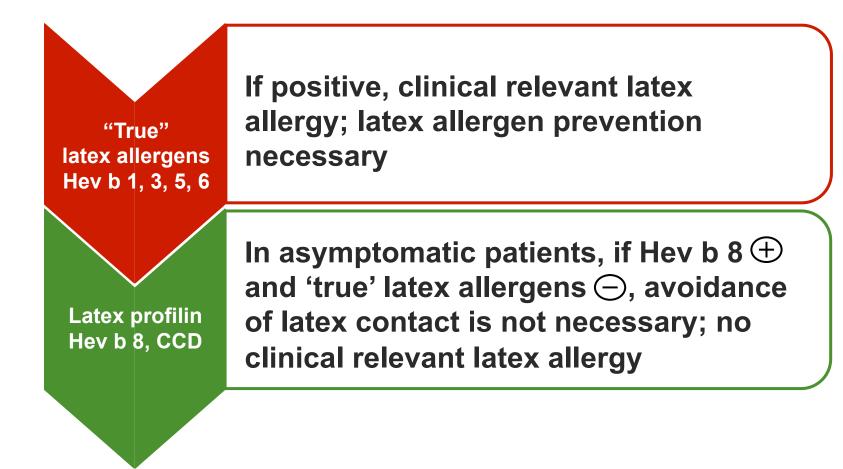
Allergens are characterized, Hev b 1 - 15




- rHev b 1, 3, 5, 6.01, 6.02, 7, 8, 11 available
- $\odot$
- Sensitized patients clearly recognized **major allergens** (HCW versus SB)
- Spiking of the latex extract with the stable **rHev b 5** improved the in-vitro diagnostic



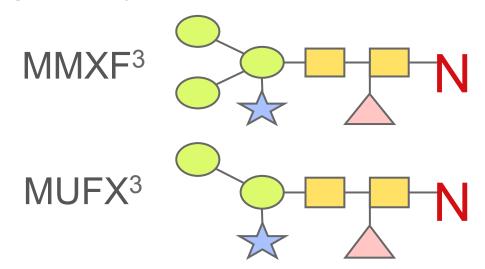
Latex SPTs are no longer available

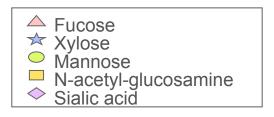

#### but

Component-resolved in-vitro diagnostic is possible (diagnostic workflow)



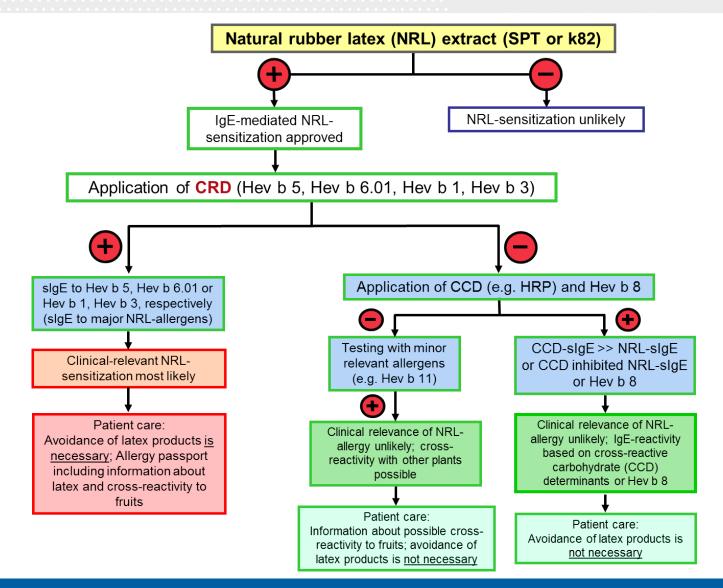



#### Marker allergens for latex allergy



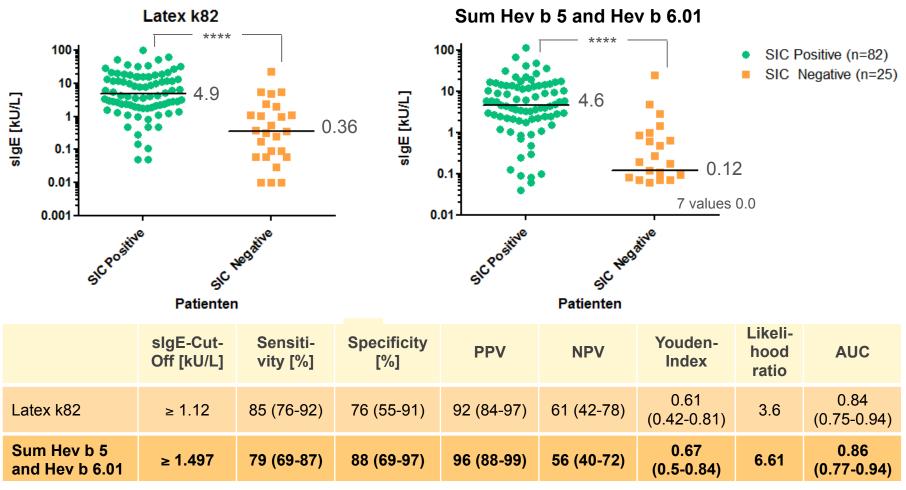



#### **<u>C</u>ross-reactive** <u>C</u>arbohydrate <u>D</u>eterminants (CCD)


- Most allergens, particularly of plant origin, reveal a glycanassociated IgE reactivity.
- Glycan epitopes may share significant structural elements with allergens of other, non-related protein families. This feature predestinates them to be an important cause of a large variety of cross-reactions.






#### **Diagnostic workflow**







#### Latex-elgHevsb providevation 01-slgE vs. provocation



Vandenplast, ..., Raulf et al. Allergy 2016

#### **Baker's asthma**

- One of the oldest recognized occupational diseases (First described by Bernardino Ramazzini (1633-1714) in "De Morbis artificum diatriba")
  - diatriba") ccupational asthma
- One of the most common forms of occupational asthma Examples:
  - in France: Incidence of baker's asthma among young bakers ranges from 0.3 to 2.4 cases per 1000 person-years [Remen et al. 2010]
  - in Norway: Incidence of occupational asthma among male bakers 2.4 and female 1 case per 1000 person-years [Leira et al. 2005]
  - in Germany: Incidence of occupational asthma among bakers ~2 cases per 1000 person-years [BGN, personal communication]

~ 10 % of all bakers develop asthma during their working life period



## **Potential allergens in bakeries**

- Wheat flour
- Rye flour
- Further cereal flours (e.g. barley)



**VIPA RUHR** UNIVERSITÄT BOCHUM

- Enzymes ( $\alpha$ -amylase, cellulase etc.)
- Soy, Lupine flour
- Storage mites
- Flour pests (including flour worm, flour moth)
- Moulds
- Egg yolk and white, sesame seed, nuts, poppy etc.



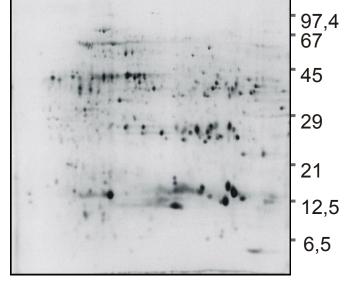
The most relevant allergenic wheat fractions for baker's asthma are the water-/salt-soluble albumins and globulins.

#### Which allergens are important?



#### Molecular allergy diagnosis for baker's asthma

#### **Proteomic approach**


- 2D-electrophoresis and
- 2D-immunoblotting

e.g. 1995 Posch et al. 1997 Weiss et al. 2001 Sander et al.



High number of proteins/peptides with IgE-binding capacity were identified

High interindividual variation of 2D IgEbinding profiles in patients with baker's asthma



pH 4 - 8



#### Identified wheat flour allergens I

- α-amylase inhibitors MW 14-14 KDa
  - Tri a 15 Monomer (Wheat) alpha-amylase inhibitor 0.28 (WMAI-0.28)
  - Tri a 28 Dimeric alpha-amylase inhibitor (WDAI-0.19)
  - Tri a 29.01 Tetrametric alpha-amylase inhibitor (WTAI-CM1) Tri a 29.02 Tetrametric alpha-amylase inhibitor (WTAI-CM2)
  - Tri a 30 Tetrametric alpha-amylase inhibitor (WTAI-CM3)
- Thiol reductase homologue 27 KDa Tri a 27
- Serine protease inhibitors
  - Tri a 39 SPILA Serine protease inhibitor-like protein9.9 KDaTri a 33 Serpin40-43 KDa



#### Identified wheat flour allergens II

|   | Tri a 12  | Profilin                                   | 14 KDa   |
|---|-----------|--------------------------------------------|----------|
|   | Tri a 14* | Wheat nonspecific lipid transfer protein 1 | 9 KDa    |
|   | Tri a 18  | Agglutinin isolectin 1                     |          |
|   | Tri a 19  | Omega-5 gliadin, seed storage              | 65 KDa   |
|   | Tri a 21  | Alpha/beta gliadin                         | 32.7 KDa |
|   | Tri a 25  | Thioredoxin H                              | 13.4 KDa |
|   | Tri a 26  | High molecular weight glutenin             | 88 KDa   |
|   | Tri a 31  | Triosephosphate-isomerase (TPIS)           | 27 KDa   |
|   | Tri a 32  | 1-cys-peroxiredoxin                        | 23.9 KDa |
|   | Tri a 34  | Glyceraldehyde-3 phosphate-dehydrogenase   | 36.5 KDa |
|   | Tri a 35  | Dehydrin                                   | 12.4 KDa |
|   | Tri a 36  | Low molecular weight glutenin GluB 3-23    | 40 KDa   |
|   | Tri a 37  | Alpha purothionin                          | 12 KDa   |
| _ |           |                                            |          |

\*isoforms: Tris a 14.01.101 (nsLTP 9.1); Tri a 14.0201 (nsLTP 9.7)



## Limitation of the studies to evaluate the importance of single allergens in baker's asthma

- Different patients (from different countries, different exposure)
- Different methods (SPT, ELISA, Dot-blot, (1D/2D-)Westernblot, microarray, etc.)
- Tested with single or only few purified proteins in natural or recombinant forms

Using a (complete) panel of identified wheat flour allergens in recombinant form for determination of the IgE-binding profile





#### **Characteristics of the study group**



101 Bakers (40 German, 37 Dutch, 24 Spanish)

- f4: 7.47 kU/L; (0.55 83.3 kU/L)
- gx1: 1.79 kU/L; (0.01 >100 kU/L)
- **29 Controls** (10 German, 10 Dutch, 9 Spanish; 59% asthma, 72% rhinitis, grass pollen positive and wheat positive)
  - f4: 1.14 kU/L; (0.36 9.1 kU/L)
  - gx1: 81.3 kU/L; (3.63 705 kU/L)

Sander I, Rihs HP, Doekes G, Quirce S, Krop E, Rozynek P, van Kampen V, Merget R, Meurer U, Brüning T, Raulf M: J Allergy Clin Immunol 2015; 135: 1529-1537

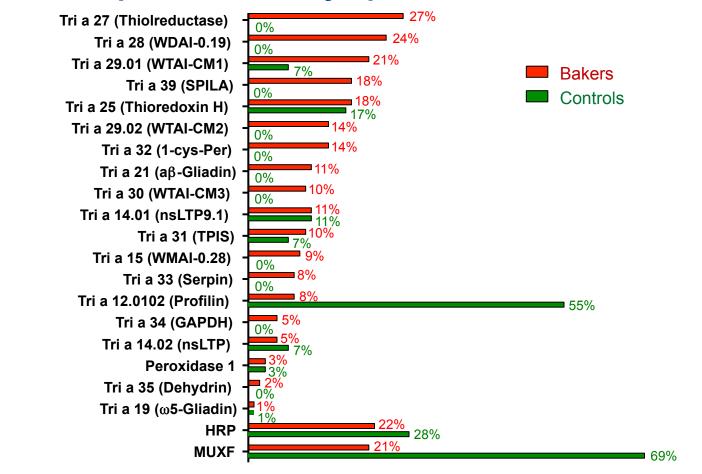


#### **19 Recombinant wheat flour allergens and 2 CCDs**

- Tri a 15 (WMAI-0.28)
- Tri a 28 (WDAI-0.19)
- Tri a 29.01 (WTAI-СМ1)
- Tri a 29.02 (WTAI-СМ2)
- Tri a 30 (wтаi-смз)
- Tri a 12.0102 (Profilin)
- Tri a 14.02 (nsLTP)
- Tri a 34 (GAPDH)
- Tri a 33 (Serpin)
- Tri a 31 (TPIS)
- Tri a 21 ( $\alpha\beta$ -Gliadin)
- Tri a 25 (Thioredoxin H)
- Tri a 32 (1-cys-Peroxiredoxin)
- Tri a 27 (Thiol reductase)
- Peroxidase 1
- Tri a 35 (Dehydrin)
- Tri a 39 (SPILA)

- HRP- Horse Radish Peroxidase (MMXF)
- MUXF (Glucan Bromelain)
- **Tri a 19** (ω-5-Gliadin)\*
- Tri a 14.01 (nsLTP)\* (\*ThermoFisher)

Binding to Streptavidin ImmunoCAPs

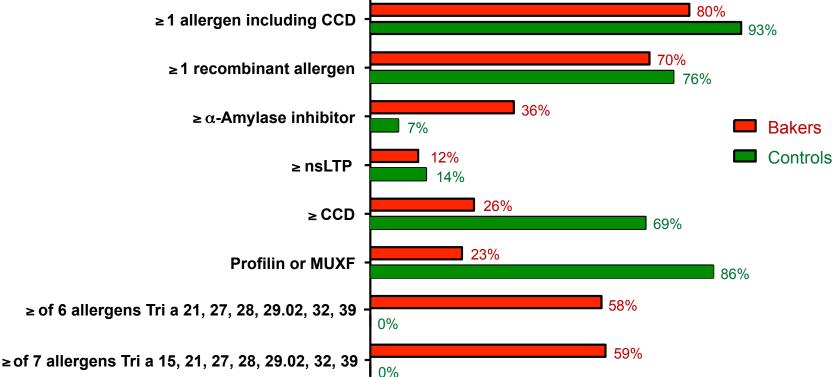

| - 1 |  |
|-----|--|
|     |  |

#### MBP or TRX-His-S were also tested

according to Sander I, Rozynek P, Rihs HP, van Kampen V, Chew FT, Lee WS, Kotschy-Lang N, Merget R, Brüning T, Raulf-Heimsoth M: Allergy 2011; 66: 1208-1215 Sander I, Rihs HP, Doekes G, Quirce S, Krop E, Rozynek P, van Kampen V, Merget R, Meurer U, Brüning T, Raulf M: J Allergy Clin Immunol 2015; 135: 1529-1537



#### Sensitization profile of 101 symptomatic bakers and 29 controls




#### ✓ No major allergen detectable

Monika Raulf - 6th Jack Pepys Workshop Toronto



## Summary: Sensitization to grouped allergens (101 bakers and 29 controls)

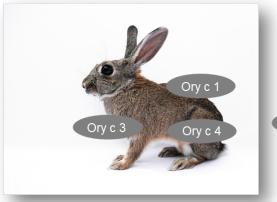


# For bakers, in most cases the wheat flour CAP values were higher than the sum of IgE to single allergens, whereas for control subjects the sum was higher

### Baker's asthma and CRD



- All soluble fractions contain allergens; the most relevant for baker's asthma are the **albumins** and **globulins**.
- In 2D-immunoblots of the salt-/water-soluble fraction more than 100 different allergen spots were detected.
- The allergen spectrum differs individually.
- So far, no common major wheat allergen could be identified, but Tri a 27 and Tri a 28 are most frequent.
- Tri a 19 (ω-5-Gliadin; marker allergen for WDEIA) is not a relevant allergen for baker's asthma.
- So far, for routine diagnosis allergen **specific IgE tests with whole wheat flour** extracts remain mandatory because of superior diagnostic sensitivity.
- Component-resolved diagnosis might improve the diagnosis of baker's asthma and help to differ between grass pollen, respiratory wheat flour and wheat-induced food allergy (differentiation of occupational sensitization and sensitization caused by cross-reactivity is possible).






#### Laboratory animal allergens







As common for the most mammalian inhalant allergens, the major allergens from mouse, rat, guinea pig, hamster and rabbit are lipocalins



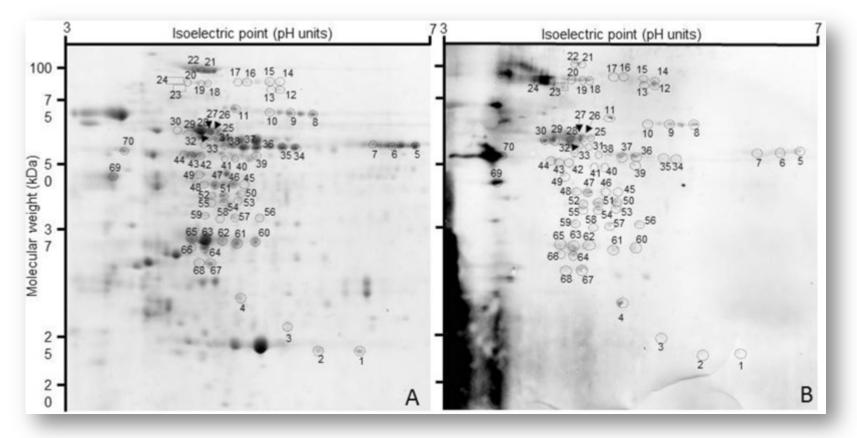


#### Laboratory animal allergy (LAA)

- Allergen-specific IgE to the suspected animal allergen extracts is the common and recommended step. Specific IgE determination in the case of LAA based on extracts prepared from epithelia, serum-/ urine protein as mixture or alone.
- Dual sensitization to rat and mouse urinary allergens reflects crossreactive molecules rather than atopy and therefore the determination of the primary sensitizer is difficult.
- There is not enough evidence to advice the use of single molecules for *in-vitro* diagnosis. Single animal allergens, relevant for LAA, are not commercially available so far for routine testing.
- Impact of individual molecules on severity of symptoms is still unknown.



#### Molecular approach for Hypersensitivity pneumonitis (HP)


Example:

Farmer's lung disease





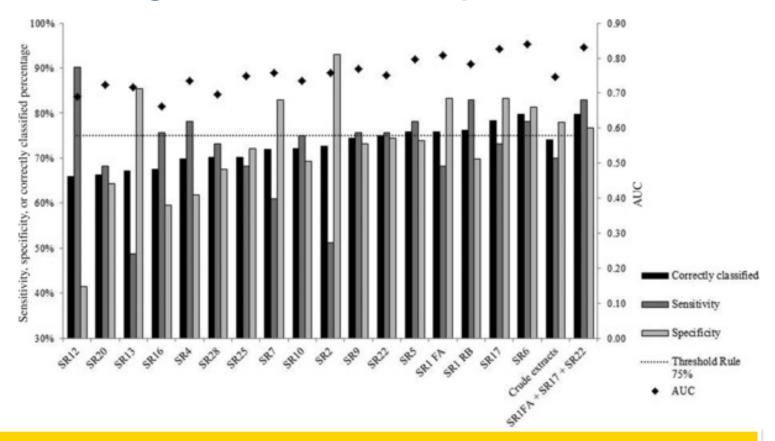
## Proteomic – 2D-Electophoresis – detection of immune reactive *S. rectivirgula* proteins



#### Barrera et al, 2014; Proteomics Clin






- Identification of 25 farmer's lung-specific proteins via MS (e.g. proteases SR2, SR4, SR14, SR21; glycosidase SR9)
- Production of 17 recombinant proteins with immune reactivity

#### • ELISA-testing

with sera from 41 farmer's lung-patients and from 43 healthy, exposed controls (from France and Switzerland)

 Evaluation if the proteins can contribute to a differentiation between diseases and exposed patients

## **ELISA-testing with recombinant proteins**



**RUHR UNIVERSITÄT** BOCHUM

**RU**B

#### Combination of SR1FA + SR17 + SR22 in ELISA 83% sensitivity and 77% specificity

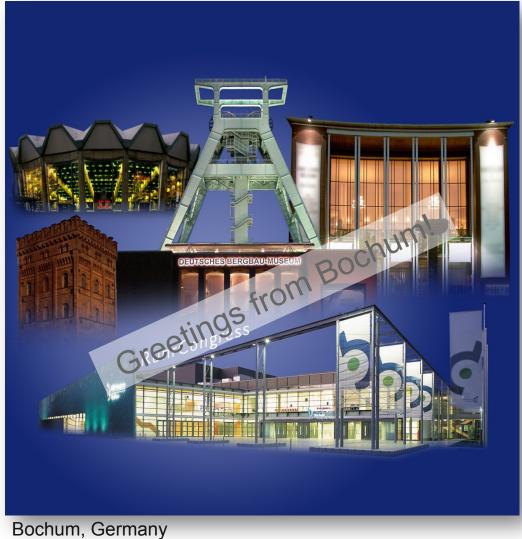
#### **Perspectives**

- Immune precipitation with S. rectivirgula-extract
- ELISA with
   S. rectivirgula-extract
- ELISA with SR1FA, SR17, SR22 + 77% specificity
  - but not all responded to actinomycetes
  - in the future: production of a panel of recombinant proteins of the four species S. rectivirgula, W. sebi, Lichtheimia corymbifera, Eurotium amstelodami (A. vitis) for the diagnosis of farmer's lung disease

40% sensitivity

70% sensitivity

83% sensitivity








- Wide range of occupational allergens, often individual case reports
   ⇒ only few allergen sources are characterized on the molecular level; but an
   essential prerequisite for the production of suitable allergen extracts is
   knowledge about relevant allergens.
- Molecular allergy diagnostic only useful for latex.
   For baker's asthma and for LAA no relevant single allergens are commercially available so far.
- Component-resolved diagnosis might help to differ between occupational sensitization and sensitization caused by cross-reactivity between environmental allergens.
- CCD-reagents can be used as *in vitro* screening-tools to discriminate between 'true' allergy and clinical not relevant cross-reactivity.
- **Complementary tests** (e.g. BAT (FlowCAST, CAST), inhibition test, serum or urine biomarkers etc.) may be helpful, but they need further validation.
- There is a broad range of unmet needs in the case of OA to improve diagnosis and therapy.





### Thank you for your attention!