Theme 6 : How to determine probability of occupational causality in COPD:

Presenters: Susan Tarlo & André Cartier. Discussion leaders: Phil Harber, Rolf Merget
SMT Disclosure

- Patients seen at request of Ont WSIB
- Grant Support previously from Ont WSIB
Clinical issues to consider

• Definition: epidemiologic vs case definition
• Causes and range of specific risk populations – specific occupations or VGDF?
• Confounding factors/ risk factors: smoking, atopy, others
• Clinical diagnosis, overlap syndromes
COPD is not a single disease: can co-exist or overlap

- Asthma – may result in a component of irreversible airflow limitation (ACOS)
- Chronic bronchiolitis – e.g. from nitrogen oxides, sulphur dioxide or from popcorn butter flavoring (smoking-related airway disease usually starts in bronchioles)
- Bronchiectasis

Clinical studies of COPD usually aim to exclude these other airway diseases
Risk Factors for COPD

Genes

Exposure to particles

- Tobacco smoke
- Occupational dusts, organic and inorganic
- Indoor air pollution from heating and cooking with biomass in poorly ventilated dwellings
- Outdoor air pollution

Lung growth and development

Gender

Age

Respiratory infections

Socioeconomic status

Asthma/Bronchial hyperreactivity

Chronic Bronchitis

© 2013 Global Initiative for Chronic Obstructive Lung Disease
Occupational COPD

• COPD caused in whole or in part by occupational exposures
The leading risk factor for COPD is smoking

- Smoking accounts for 80% of all COPD
- Smoking is falling, but has been more common in at risk working populations, especially in older workers
- Therefore estimates of COPD related to work must consider smoking as a confounder as well as a possible co-factor
‘ ……a value of 15% is a reasonable estimate of the occupational contribution to the population of the burden of COPD. ’
COPD 2007 estimate

Blanc & Torén, Int J Tuberc Lung Dis (IJTLD) 2007; 11:122-33

- 6 studies including > 18,000 subjects; 1 mortality study >300,000 subjects
- PAR% for occupational exposure: Range = 0-37%, Median = 15%
- PAR% Among non-smokers (5 estimates) Range =27-53%, Median = 31%
Chronic obstructive pulmonary disease among residents of an historically industrialised area

Darby et al; Thorax, 2012

<table>
<thead>
<tr>
<th>Cigarettes / VGDF Exposure</th>
<th>Subject n (1183)</th>
<th>Probability COPD</th>
<th>Excess Prob.</th>
<th>Adjusted OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never/No</td>
<td>530</td>
<td>0.02</td>
<td>0</td>
<td>1.0 (REF)</td>
</tr>
<tr>
<td>Never/Yes</td>
<td>302</td>
<td>0.08</td>
<td>0.06</td>
<td>5.6 (2.6-12)</td>
</tr>
<tr>
<td>Low/No</td>
<td>248</td>
<td>0.07</td>
<td>0.05</td>
<td>4.0 (1.8-8.9)</td>
</tr>
<tr>
<td>Low/Yes</td>
<td>279</td>
<td>0.18</td>
<td>0.16</td>
<td>15.7 (7.6-32)</td>
</tr>
<tr>
<td>High/No</td>
<td>186</td>
<td>0.15</td>
<td>0.13</td>
<td>10.4 (4.9-22)</td>
</tr>
<tr>
<td>High/Yes</td>
<td>338</td>
<td>0.31</td>
<td>0.29</td>
<td>32 (16-64)</td>
</tr>
</tbody>
</table>

Low = 20 Pack-years or less; High=>20 Pack-years; VGDF=Vapors, Gas, Dust, or Fumes by Job Exposure Matrix
UK Biobank study (De Matteis, OEM 2016)

- Q in >500,000 adults 2006-10,
- 397,282 had at least 1 of 3 attempts acceptable spirometry, COPD defined by LLN
- 228,614 with spirometry and a coded current job
- 57% never smoked
- ~11% previous asthma diagnosis
- Stratified analyses – prevalence ratios cases vs healthy but overall findings similar by group
<table>
<thead>
<tr>
<th></th>
<th>PR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALL</td>
</tr>
<tr>
<td>Seafarers</td>
<td>2.64</td>
</tr>
<tr>
<td>Coal mine operatives</td>
<td>2.3</td>
</tr>
<tr>
<td>Industrial cleaners</td>
<td>1.96</td>
</tr>
<tr>
<td>Roofers</td>
<td>1.86</td>
</tr>
<tr>
<td>Packers, canners fillers</td>
<td>1.60</td>
</tr>
<tr>
<td>Domestics, cleaners</td>
<td>1.43</td>
</tr>
<tr>
<td>Floorers and wall tilers</td>
<td>1.41</td>
</tr>
</tbody>
</table>

Also chemical workers, postal workers, school assistants…
Many other occupations with increased risk airflow obstruction

(Hnizdo et al, AJIM ’04)

• NHANES III data, population aged 30-75
• Defined obstruction as FEV1/FVC <75% and FEV1 <80% predicted
• Most frequent associated industries: armed forces; rubber, plastics, and leather manufacturing; utilities; textile mill manufacturing; health care; food products manufacturing; sales; construction; and agriculture
Examples of higher risk occupations for chronic obstructive airways diseases (excluding asthma)

<table>
<thead>
<tr>
<th>Occupations</th>
<th>Exposures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hog/poultry farmers</td>
<td>Organic dust, gases</td>
</tr>
<tr>
<td>Cotton workers (byssinosis) and other textile</td>
<td>Dust, endotoxin</td>
</tr>
<tr>
<td>workers</td>
<td></td>
</tr>
<tr>
<td>Welders</td>
<td>Nitrogen oxides, ozone</td>
</tr>
<tr>
<td>Flavoring workers (popcorn workers’s lung)</td>
<td>Diacetyl</td>
</tr>
<tr>
<td>Aluminum pot-workers</td>
<td>Al fluorides</td>
</tr>
<tr>
<td>Miners</td>
<td>Silica dust</td>
</tr>
<tr>
<td>WTC dust,</td>
<td>High pH Calcium oxide dust</td>
</tr>
<tr>
<td>Deployed military workers in Asia</td>
<td>Gases from burn pits, dusts</td>
</tr>
</tbody>
</table>
Implications of epi studies

• The occupational contribution to COPD from VGDF is especially high among non-smokers,

• but greatest risks of COPD are among smokers with occupational exposures to VGDF and is more than additive

• Risk also increased with alpha-on antitryptase deficiency- do other COPD risk factors similarly increase occupational risks?
Case example

- Mr MB, age 55
- Smoked 2-3 per day x20y, quit 2004
- Worked x 23 years with TTC as a welder in tunnels, exposed to dusts, including asbestos and welding and diesel fumes (included stainless steel welding and manganese), mostly arc welding
- Progressive SOBOE x2y, now climbing 10 steps
- Cough and clear sputum at work
Case cont'd

- FEV1 47%, FEV1/VC 40%, FEV1 ↑ 14% (>200ml) post-bd
- Moderate hyperinflation, severe gas trapping, normal DLCO
- Allergy skin tests all negative, including Ni, Chromium salts
- Serial PEFRs 320-360, higher range after prn b-d
- CT chest mosaic attenuation, bronchial wall thickening, mucus plugs – no Asb changes
CT - mosaic attenuation, bronchiolitis (exp image)
Case continued

• ∆ Occ COPD with asthmatic component (ACOS) and likely component of bronchiolitis
• Changed work to outdoor delivery for TTC
• Combination LABA, LAMA, ICS + SABA
• Follow-up FEV1 58%, FEV1/FVC 46%, no further b.d response
• Symptomatically improved with outdoor work
• WSIB claim accepted for occ COPD
Other diagnostic issues: medical surveillance

- How common
- Has been performed for flavoring workers, miners, and some other higher-risk settings
- Spirometry needs: quality tests, preferably with pre-placement baseline values and longitudinal comparisons (ATS 2014 Statement)
- Need to recognize that baseline values in workers are often “supernormal” and a fall to “normal” values may be a significant change
Spirola program, CDC NIOSH
www.cdc.gov/niosh/topics/spirometry/spirola.html

Percent predicted values for FEV1 and FVC, and the FEV1/FVC ratio plotted against age

Longitudinal Percent Predicted and Ratio Evaluation

AGE (years)

Percentage

ID First Name Middle Initial Last Name Sex Race Height Age FEV1 FVC TestDate FEV12 FVC2 QFEV1
918 DEWITT HAYS Male White 180 34 4757 5867 11/7/1991 4727 5715 A
918 DEWITT HAYS Male White 180 35 4686 5728 3/25/1992 4656 5638 B
Longitudinal FEV1 values (green dots) plotted against age and evaluated against the limit of longitudinal decline (blue line) and the cross-sectional limits: lower limit of normal (purple line) and 0.1th percentile (orange line).
André.....